Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone?

نویسندگان

  • M G Mullender
  • R Huiskes
چکیده

Previously, we have investigated the possible role of osteocytes as mechano-sensors, and mediators of bone turnover. It was found that the proposed regulatory mechanism produced morphologies of trabecular bone, under particular loading conditions, which were consistent with morphogenesis and adaptation as seen in reality. The main objective of this study was to discern whether lining cells or osteoblasts could possibly play a similar role as effectively with regard to their capacity for self-optimization of the trabecular architecture, in terms of a low apparent mass to stiffness ratio. For that purpose the earlier analyses with osteocytes as mechano-sensors, distributed throughout the bone, were repeated for mechano-sensors located at bone surfaces only. Compared to the osteocyte model, the surface cell remodeling algorithm was reluctant to change its architecture, which implies that it is less sensitive to changes in the loading pattern. This resulted in less efficient bone adaptation, which was reflected by a considerably higher relative mass for a similar apparent stiffness in the loading direction. In other words, more mass is needed to obtain an equally stiff structure, at the apparent level, with respect to the externally applied loads. Furthermore, stresses and strains at the tissue level vary across a much wider range, relative to the osteocyte model, where the higher incidence of elevated strains indicates an increased failure risk. Therefore, we conclude that mechanical information at the bone surface may not be sufficient to adequately regulate functional bone adaptation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone

The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteobl...

متن کامل

Quantifying the osteocyte lacunae density in human cortical bone

Osteocytes are the basic bone cells and are located in lacunae inside the bone matrix. Each osteocyte is connected to its neighbours through tiny channels (canaliculi) with a diameter of less than a micrometer. This osteocyte network plays an important role in mechanically induced adaptive bone remodeling, whereby the individual osteocytes work as mechano-sensors to detect states of local under...

متن کامل

Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation.

Osteocytes are the most abundant cells in bone and are ideally located to influence bone turnover through their syncytial relationship with surface bone cells. Osteocyte-derived signals have remained largely enigmatic, but it was recently reported that human osteocytes secrete sclerostin, an inhibitor of bone formation. Absent sclerostin protein results in the high bone mass clinical disorder s...

متن کامل

A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.

In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is tr...

متن کامل

A Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology.

The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bone

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 1997